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Abstract

A new method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds.

The direction of wave propagation is adjusted by these two wave speeds. If they are set to be the fastest wave speeds in

two opposite directions, the method leads to the HLL approximate Riemann solver devised by Harten, Lax and van

Leer, which indicates that the HLL solver is a vector flux splitting scheme as well as a Godunov-type scheme. A more

accurate scheme that resolves 1D contact discontinuity is further proposed by carefully choosing two wave speeds so

that the flux vector is split to two simple flux vectors. One flux vector comes with either non-negative or non-positive

eigenvalues and is easily solved by one-side differencing. Another flux vector becomes a system of two waves and one,

two or three stationary discontinuities depending on the dimension of the Euler equations. Numerical flux function for

multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable sim-

plicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any

matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1D Euler equations, the

scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme

can exactly resolve stationary 1D contact discontinuities, and it avoids the carbuncle problem in multi-dimensional

computations. The robustness of the scheme is shown in 1D test cases designed by Toro, and other 2D calculations.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

Upwind numerical methods are to discretize hyperbolic equations according to the direction of wave

propagation. There are basically two approaches for determining upwind directions, namely the flux vector

splitting (FVS) approach and the Godunov approach. A comprehensive review of the methods can be

found elsewhere (e.g. [6,18]).

The Godunov-type approach uses either exact or approximate Riemann solutions between two adjacent

states to calculate the flux through the interface between them. Most Godunov-type schemes have been
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proven to be robust and accurate for the 1D Euler equations. For multi-dimensional Euler equations, the

extension based on 1D Riemann solver, which obviously neglects the shear wave that only exists in multi-

dimensions, contains a large amount of empiricism and must therefore remain suspect, although these

schemes have been successfully applied to many practical problems. Quirk [12] reported that many

Godunov-type schemes contain subtle flaws that can cause spurious solutions, all in two dimensions.

Carbuncle instability is one of the flaws, and has been extensively investigated. It was noticed that the

Riemann solvers that explicitly take into account the presence of a contact surface, suffer from the car-

buncle instability, while the FVS schemes exhibit absence of the instability [11].
The FVS approach achieves upwinding by decomposing the flux vector into positive and negative

components according to the sign of eigenvalues of the coefficient matrix. The identification of upwind

directions is done with less effort than in the Godunov-type methods. The upwinding is also realized for

multi-dimensional flows. However, as compared with Godunov-type schemes, the FVS results in poorer

resolution of discontinuity, particularly contact discontinuity. Most upwind schemes, either Godunov-type

or FVS methods, have difficulties in resolving the sonic point, and produce a spurious expansion shock

there.

In this paper, a new method to construct simple, robust and accurate upwind schemes is proposed for
solving the Euler equations. In view of the merits and demerits of Godunov-type and FVS approaches, we

are excited about the method that overcomes all above-mentioned demerits. The paper is organized as

follows. Section 2 introduces some preliminary knowledge related to this paper. Section 3 is devoted to the

new scheme. The basic idea is first described, and then the equivalence of the scheme in a simple case to the

HLL Riemann solver is shown in Section 3.1. Most attention is paid on the scheme that may resolve all

waves in the Euler equations in Section 3.2. Multi-dimensional extension is shown in Section 3.3. High-

order extension of scheme is discussed in Section 4. Extensive numerical tests are given in Section 5. Finally,

the scheme is summarized in Section 6.
2. Preliminaries

Consider the one-dimensional system of conservation laws for ideal-gas flows

Ut þ Fx ¼ 0; ð1Þ

where U;F are vectors of conservative quantities and fluxes, respectively,

U ¼
q

qu
qe

0
@

1
A; F ¼

qu
quuþ p
qeuþ pu

0
@

1
A: ð2Þ

The flux vector can be rewritten as

F ¼ uU þ P; ð3Þ

where P ¼ ð0; p; puÞT. Flux vector (3) is generally used in this paper.

For the numerical solution of (1), we shall consider a conservative scheme

Unþ1
i ¼ Un

i � kðF̂Fiþ1=2 � F̂Fi�1=2Þ; ð4Þ

where k ¼ Dt=Dx is the ratio of time step Dt to grid size Dx. F̂Fiþ1=2 is often referred to as numerical flux. The

numerical flux vector is given by two neighboring cells or left and right cells,

F̂FðUiþ1=2Þ ¼ F̂FðUi;Uiþ1Þ ¼ F̂FðUL;URÞ; ð5Þ
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and it must satisfy the consistency condition

F̂FðU;UÞ ¼ FðUÞ: ð6Þ

System of equations (1) can be expressed in a quasi-linear form

Ut þ AUx ¼ 0; ð7Þ

where matrix A ¼ oF=oU. If the eigenvalues of A are real and the eigenvectors exist, the system of equations

is hyperbolic. Denote R as the matrix whose columns are right eigenvectors of A. Then one has

A ¼ RKR�1;

where K is the matrix of eigenvalues. The diagonal matrix of eigenvalues K is

K ¼ diagonalðu� c; u; uþ cÞ: ð8Þ

3. Artificially upstream flux vector splitting (AUFS)

The fundamental idea of the present scheme is to split flux vector (3) as following:

F ¼ ð1�MÞ½ðu� s1ÞU þ P� þM ½ðu� s2ÞU þ P�; ð9Þ

where s1; s2 are two scalar constants, and it is easy to show that (9) is exactly (3) if

M ¼ s1
s1 � s2

: ð10Þ

For the sake of clarity, flux vector (9) is rewritten as

F ¼ ð1�MÞF1 þMF2; ð11Þ

where two flux vectors F1 and F2 have a similar form

F1;2 ¼ ðu� sÞU þ P; ð12Þ

where s corresponds to s1; s2 for F1 and F2, respectively. Therefore, these two flux vectors are different from

the original F by a term �sU. Their Jacobian matrixes become

A1;2 ¼
oF1;2

oU
¼ A � sI;

and obviously their corresponding matrixes of eigenvalues become

K1;2 ¼ diagonal ðu� s� c; u� s; u� sþ cÞ: ð13Þ

Upwind schemes are to discretize the Euler equations basically according to the direction of wave prop-

agation, or the sign of the eigenvalues. An excellent merit of the present splitting is that we can change the

eigenvalues in (13) by varying the scalar value s, an artificially introduced wave speed. We may choose some

appropriate values of s1; s2 to simplify the upwinding discretization for the Euler equations. It is emphasized
that for any constant s, the corresponding flux vector can be evaluated by (12) without recourse to any

matrix operation, and this property greatly simplifies the scheme. In this paper, we will discuss two ways to

choose constants s1; s2 in two following sections.
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The present idea of introducing two wave speeds was somehow stimulated by the work of Sokolov et al.

[15], in which they noticed that the direction of wave propagation is relative to the frame of observation.

3.1. The AUFS method that is equivalent to the HLL Riemann solver

An intuitive choice of s1 and s2 is to set

s1 P uþ c; s2 6 u� c;

such that eigenvalues in (13) are either non-positive or non-negative. Then one gets the numerical flux

vectors, according to the wave direction

F̂F1 ¼ URðuR � s1Þ þ PR; F̂F2 ¼ ULðuL � s2Þ þ PL; ð14Þ

since all eigenvalues of K1 are non-positive, and those of K2 are non-negative. Only subsonic flows are

considered here, and one-side differencing of supersonic flows will be readily taken into account in eval-

uating wave speed s1 and s2. Substituting (14) to (11), one obtains the intercell flux

F̂F ¼ � s2
s1 � s2

½URðu� s1Þ þ PR� þ s1
s1 � s2

½ULðu� s2Þ þ PL�:

Rearranging the terms on the right-hand side, and using (3), one gets

F̂F ¼ s1F
L � s2F

R

s1 � s2
þ s1s2
s1 � s2

ðUR � ULÞ; ð15Þ

which is identical to the HLL solver theoretically proposed by Harten et al. [6]. The HLL solver is made

practical by Davis [2] and Einfeldt [3]. They devised the flux following the Godunov approach, and as-

suming a wave configuration that consists of two waves separating three constant states. The HLL solver is

an approximate Godunov-type scheme, and we show here that the solver is a vector flux splitting scheme

as well. Interestingly enough the solver, like a flux vector splitting scheme, does not produce carbunlce

phenomenon [11].

Physical interpretation of the HLL solver is sketched in Fig. 1, which is conceptually different from the

original wave configuration considered by Harten et al. [6]. In subsonic flows, the Euler equations contain
left and right traveling waves on the laboratory frame, which makes upwinding difficult. However, all waves

can propagate in the same direction, observed from the frame moving at a speed of s1 or s2. A limit case is

shown in Fig. 1, in which one wave speed becomes zero. One-sided approximation can be easily done for

these unidirectional waves on the two moving frames.

In order to determine completely the numerical fluxes in (15) we need to provide an algorithm for

computing those two wave speeds. A direct wave speed estimate gives, suggested by Davis [2]

s1 ¼ maxð0; uL þ cL; uR þ cRÞ; s2 ¼ minð0; uL � cL; uR � cRÞ; ð16Þ

where zero term is added to guarantee one-side differencing for supersonic flows. A more sophisticated

estimate is based on the isentropic equations of gas dynamics presented by Toro et al. [19]. The exact

solution for the speed u� and the sound speed c� between two isentropic waves can be found,

u� ¼ 1
2
ðuL þ uRÞ þ cL�cR

c�1 ;

c� ¼ 1
2
ðcL þ cRÞ þ 1

4
ðc � 1ÞðuL � uRÞ;

ð17Þ

and then we choose

s1 ¼ maxð0; u� þ c�; uR þ cRÞ; s2 ¼ minð0; uL � cL; u� � c�Þ: ð18Þ



Fig. 1. Interpretation of the HLL solver from the viewpoint of AUFS.
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The HLL solver is very efficient and robust for many inviscid applications, but adds excessive diffusion

around contact discontinuities. To overcome the shortcoming, Toro et al. [19] proposed the HLLC solver

(C stands for contact) by introducing a contact in the two-wave configuration of the HLL solver. Although
the HLLC solver improves the accuracy around contact discontinuities, it encounters the problem of

carbuncle instability as other Riemann solvers that explicitly resolve contact discontinuity [11] , and kinked

Mach stems in shock reflection that will be shown in Section 5. In fact, it is this problem of kinked shock

waves that forces us to find a more accurate and robust scheme.

Since this simple version of the AUFS method is the same as the HLL solver, its property and numerical

performance will not be repeated in this paper. A comprehensive review of the HLL solver can be found in

[18]. The AUFS method, hereinafter, is referred to as the method that can resolve 1D contact disconti-

nuities and remove the carbuncle instability, to be presented in the following sections.

3.2. The AUFS method that resolves contact discontinuities

The AUFS method provides a framework for the design of numerical schemes by choosing two artificial
wave speeds. In the previous section, we choose such wave speeds that the original flux vector of the Euler

equations can be split to two vectors that contain only unidirectional waves. The fact that the derived

scheme is equivalent to the robust HLL Riemann solver suggests the feasibility and reliability of the AUFS

method. In order to resolve contact discontinuities, we propose another way to choose the wave speeds in

this section.

Consider

s1 ¼ u;

s2 ¼
u� c for s1 > 0;

uþ c for s1 6 0;

�
ð19Þ

and then two split flux vectors become

F1 ¼ P; ð20Þ



310 M. Sun, K. Takayama / Journal of Computational Physics 189 (2003) 305–329
which consists of only pressure and velocity terms, and

F2 ¼ Uðu� s2Þ þ P: ð21Þ

The eigenvalues of the Jacobian matrix of flux vector F1 become ð�c; 0;þcÞ; which are two isentropic

waves and one stationary entropy wave. Following the Steger–Warming approach or formula (15), one gets

F̂F1 ¼
1

2
ðPL þ PRÞ þ dU: ð22Þ

Definition of dU will be given in (28) or (34).

The Jacobian matrix of the second flux vector F2 still maintains the property that eigenvalues are either

all non-negative or all non-positive, so it can be easily discretized by one-side differencing, depending upon
the sign of s1,

F̂F2 ¼ Uaðua � s2Þ þ Pa; ð23Þ

where

a ¼ L for s1 > 0;

R for s1 6 0:

�
ð24Þ

Substituting (22) and (23) to (11), one obtains the final intercell flux

F̂F ¼ ð1�MÞ 1

2
ðPL

�
þ PRÞ þ dU� þ M ½Uaðua � s2Þ þ Pa

�
: ð25Þ

Unlike the HLL solver that splits the Euler equations to two systems of three unidirectional waves, the

AUFS scheme retains one system of the unidirectional waves in F2, and introduces another system of two

symmetric sound waves and a stationary contact wave, F1, as sketched in Fig. 2. In multi-dimensions,
Fig. 2. Physical interpretation of the AUFS scheme.
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although there are more than three waves, the Euler equations have only three wave speeds. The present

splitting is therefore also valid for multi-dimensions.

The second term on the right-hand side of (22), dU, represents the artificial viscosity. The performance of

the scheme (25) should rely on the way to define dU. A few possible choices for the discretization of dU are

discussed here. First, we consider the Steger–Warming approach [16]. Since the eigenvalues of the Jacobian

matrix of flux vector F1 becomes ð�c; 0;þcÞ, let Kþ
1 ¼ diagonalð0; 0;þcLÞ, K�

1 ¼ diagonalð�cR; 0; 0Þ, one
gets

F̂FSW
1 ¼ RLKþ

1 ðRLÞ�1UL þ RRK�
1 ðRRÞ�1UR: ð26Þ

After some calculations, it becomes

F̂FSW
1 ¼ 1

2
ðPL þ PRÞ þ 1

2cL

pL

uLpL

HLpL

0
@

1
A� 1

2cR

pR

uRpR

HRpR

0
@

1
A; ð27Þ

where H ¼ ðc2=c � 1Þ þ 1
2
u2. Last two terms on the right-hand side of (27) correspond to dU in (22). It is

seen that they introduce artificial diffusion around a contact discontinuity due to the difference of sound

speeds. Replacing cL and cR by an intermediate sound speed c, one gets that the last two terms become

dUSW ¼ 1

2c

pL � pR

ðpuÞL � ðpuÞR
c2

c�1 ðpL � pRÞ þ 1
2
½ðpu2ÞL � ðpu2ÞR�

0
B@

1
CA; ð28Þ

where dUSW denotes that (28) is derived following the Steger–Warming approach.

Interestingly enough (28) can also be obtained by using the HLL approximation (15) enforced by an

isentropic condition. The eigenvalues of the Jacobian matrix of flux vector F1 becomes ð�c; 0;þcÞ. Let
s1 ¼ c and s2 ¼ �c, substituting them to (15), one gets a formulation similar to (22)

F̂FHLL
1 ¼ 1

2
ðPL þ PRÞ þ dUHLL; ð29Þ

where dUHLL ¼ c
2
ðUL � URÞ, namely

dUHLL ¼ c
2

qL � qR

ðquÞL � ðquÞR

ðqeÞL � ðqeÞR

0
@

1
A: ð30Þ

Since the entropy wave moves at a speed of zero, which is a stationary contact discontinuity, no artificial

viscosity is required. In order to capture a stationary contact precisely, for dp ¼ 0 and du ¼ 0, the artificial
viscosity dU must be zero. However (30) introduces additional diffusion due to the density difference be-

tween left and right states. On the other hand, flux vector F1 in (20) contains only pressure and velocity

terms, so density q should not appear in its numerical flux. If the density terms in (30) are removed by

enforcing isentropic relations

dq ¼ dp
c2

; q ¼ p
c2
; ð31Þ

one immediately gets less diffusive artificial viscosity, dUHLLI, which is identical to that derived following the

Steger–Warming approach (28):

dUHLLI ¼ dUSW: ð32Þ
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If the density terms in (30) are removed by enforcing isothermal relations instead of isentropic ones,

dq ¼ cdp
c2

; q ¼ cp
c2

; ð33Þ

one gets

dUHLLT ¼ c
2c

pL � pR

ðpuÞL � ðpuÞR
c2

cðc�1Þ ðpL � pRÞ þ 1
2
½ðpu2ÞL � ðpu2ÞR�

0
B@

1
CA: ð34Þ

Both (34) and (32) can be used to approximate dU in (25).

In order to determine completely the numerical fluxes in (25) we need to provide an algorithm for
computing c, s1 and s2. Intermediate sound speed c and wave speed s1 are simply set to be their algebraic

averages

c ¼ ðcL þ cRÞ=2 ð35Þ

and

s1 ¼ ðuL þ uRÞ=2: ð36Þ

Numerical values of s2 can be computed from

s2 ¼
minð0; uL � cL; u� � c�Þ for s1 > 0;
maxð0; u� þ c�; uR þ cRÞ for s1 6 0;

�
ð37Þ

which is a combination of two speeds in (18) according to the sign of s1. Another simple choice for s2 is

s2 ¼
minð0;minðuL; uRÞ �maxðcL; cRÞÞ for s1 > 0;
maxð0;maxðuL; uRÞ þmaxðcL; cRÞÞ for s1 6 0:

�
ð38Þ
Remark 1. A difficulty in devising flux (25) is how to approximate F1. On the frame moving a speed of u, as
depicted in the upper right subfigure of Fig. 2, the system becomes two isentropic waves 	c and a stationary
contact. We can certainly use one scalar diffusive coefficient for the isentropic waves because of their equal

wave speeds. However, if the scalar coefficient is directly applied for solving F1 following the HLL ap-

proach, the same amount of viscosity is added to the stationary contact as well, as that built in (30). We
notice that the lost accuracy can be recovered by enforcing the isentropic relations (31). In this way, the

present approach employs a scalar diffusive coefficient, but the derived flux, as proved in (32), is the same as

the characteristic splitting method that introduces the minimum diffusion to all characteristic variables. The

gain is that one can achieve the characteristic splitting without using matrix operations. The upwinding

property of the overall flux (25) will be proved in Remark 2.

Remark 2. Letting W ¼ R�1U and multiplying (7) by R�1, one obtains

Wt þ KWx ¼ 0; ð39Þ

which is a system of uncoupled scalar equations. We show here that the AUFS scheme is actually a first-

order upwind method for all scalar equations, or it is a characteristic splitting method. Since the one-sided

approximation is guaranteed for the supersonic flows by introducing term zero in (37), only subsonic case is
considered here. Without losing generality, we only prove for u > 0. For the wave moving at the speed of

u� c, the scheme gives F̂F1 ¼ �cW R
u�c, as implied in (26), and F̂F2 ¼ 0, so that
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F̂Fu�c ¼ 1



� u
c

�
ð�cW R

u�cÞ ¼ ðu� cÞW R
u�c:

Similarly for other two waves, the scheme gives

F̂Fu ¼
u
c
ðcW L

u Þ ¼ uW L
u ;

F̂Fuþc ¼ 1



� u
c

�
ðcW L

uþcÞ þ
u
c
ð2cW L

uþcÞ ¼ ðuþ cÞW L
uþc:

These three fluxes are just the numerical fluxes given by the first order upwind method for the corre-

sponding scalar equations. Therefore, the stability condition of the scheme is the same as the first-order

upwind scheme, i.e.,

k
Dt
Dx

6 1;

where k is the maximum value of absolute wave speeds.

Remark 3. The AUFS scheme is somehow a nonlinear variant of the Steger–Warming splitting method.

However, numerical tests show that the AUFS scheme resolves much better the sonic point than the Steger–

Warming scheme. A noticeable difference between two schemes is that the present scheme adopts wave

estimate (37) or (38), which is developed in the Godunov-type schemes. We show here that the wave speed

estimates implicitly introduce some amount of nonlinear diffusion only to the wave that potentially produces

an expansion shock. In Remark 2, s2 is simply assumed to be u� c. Wave estimates (37) and (38) give actually

s2 ¼ u� c� �;

where � is a small value due to the minimum or maximum operator in the wave estimates. As done in
Remark 2, one gets

F̂Fu�c ¼ 1

�
� u
cþ �


ð�cW R

u�cÞ þ
u

cþ �
ð�W L

u�cÞ ¼ ðu� cÞW R
u�c þ �MðW L

u�c � W R
u�cÞ;
F̂Fu ¼
u

cþ �
½ðcþ �ÞW L

u � ¼ uW L
u ;
F̂Fuþc ¼ 1

�
� u
cþ �


ðcW L

uþcÞ þ
u

cþ �
½ð2cþ �ÞW L

uþc� ¼ ðuþ cÞW L
uþc:

It is seen that nonlinear difference � has no effect on the fluxes for waves moving at the speeds of u and uþ c,
but it introduces diffusion to the u� c wave, which is the only wave that may create expansion shock for
u > 0. Since s2 used is the extreme value in (37) or (38), it is expected that � is positive. Therefore, non-
linearly over-estimating wave speed s2 mitigates the problem in resolving sonic points that troubles most

upwind schemes. This is also confirmed by numerical tests in Section 5. The nonlinear effect of c and s1 on
numerical solutions is more complex, so simple algebraic averages (35) and (36) are used.

Remark 4. The scheme splits the flux vector, if high order terms are neglected, as that follows

F ¼ ð1�MÞP þ ðuU þMPÞ ¼
0

ð1�MÞp
ð1�MÞpu

0
@

1
Aþ

qu
quuþMp
qeuþMpu

0
@

1
A: ð40Þ
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Substituting (19) to (10), one gets

M ¼ juj
c
;

which is the flow Mach number. In this sense, the scheme is a combination of the Mach number weighted

average of pressure vector P and convective vector uU. The convective vector only appears in MF2, and is

solved by one-sided approximation according to the direction of s1 or u as done in (23). This shows again

that all waves moves at the speed of flow velocity are upwindingly solved. The present approach shares

some similarities to wave-particle splitting [13], AUSM [9] and CUSP [7] schemes. However, the present

approach, based on (9), provides a physically meaningful way to split the flux vector of the Euler equations
as shown in Figs. 1 and 2. Mathematically, it is different from (40) by high-order terms that are not trivial in

resolving discontinuities and realizes the characteristic splitting.

3.3. Extension to multi-dimensions

The Euler equations in two dimensions are given by

Ut þ Fx þ Gy ¼ 0; ð41Þ

where the conservative state vector U and the flux vector F and G are defined as

U ¼

q

qu
qv
qe

8>><
>>:

9>>=
>>;
; F ¼

qu
qu2 þ p

qvu
qeuþ pu

8>><
>>:

9>>=
>>;
; G ¼

qv
quv

qv2 þ p
qevþ pv

8>><
>>:

9>>=
>>;
: ð42Þ

We consider here a numerical scheme that employs the finite volume method for any grid system. Given an

interface with normal vector n ¼ ðnx; nyÞ, and two adjacent states, it is required to provide a numerical flux

through the interface. The Euler equations satisfy the rotational invariance property, (see, e.g. [18]),

nxF þ nyG ¼ T�1FðTUÞ:

Here T is the rotation matrix and T�1 is its inverse matrix

T ¼

1 0 0 0

0 nx ny 0

0 �ny nx 0

0 0 0 1

0
BBB@

1
CCCA; T�1 ¼

1 0 0 0

0 nx �ny 0

0 ny nx 0

0 0 0 1

0
BBB@

1
CCCA: ð43Þ

We calculate ~UU ¼ TU, ~FF ¼ FðTUÞ,
~UU ¼ TU ¼ ðq; q~uu;q~vv; qeÞT;
~FF ¼ FðTUÞ ¼ ðq~uu; q~uu2 þ p; q~uu~vv; qe~uuþ p~uuÞT;

where ~uu is the normal velocity through the interface ~uu ¼ unx þ vny , and ~vv the tangential velocity
~vv ¼ �uny þ vnx. Thus, the Euler equations can be written as, in a one-dimensional form

~UUt þ ~FFn ¼ 0: ð44Þ

It is generally known that the system (44) contains four wave speeds
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ð~uu� c; ~uu; ~uu; ~uuþ cÞ:

The AUFS method is able to split them to two flux vectors, one can be solved by one-side differencing, and
another contains two isentropic waves and two stationary waves, ð�c; 0; 0;þcÞ. In a similar way as done for
1D Euler equations, one gets

~̂FF~FF ¼ ð1�MÞ~FF1 þM~FF2

¼ ð1�MÞ½1
2
ð~PPL þ ~PPRÞ þ d~UU� þM ½~UUað~uua � s2Þ þ ~PPa�;

ð45Þ

where ~PP ¼ ð0; p; 0; p~uuÞT: Rotating back the flux, one gets the final numerical flux through the interface

F̂F ¼ T�1 ~̂FF~FF ¼ ð1�MÞ 1

2
ðPL þ PRÞ þ dU� þM ½Uað~uua � s2Þ þ Pa

� �
; ð46Þ

where P ¼ ð0; pnx; pny ; p~uuÞT: Artificial viscosity term dU is obtained, in a similar way to get (32)

dU ¼ 1

2c

pL � pR

ðpuÞL � ðpuÞR

ðpvÞL � ðpvÞR
c2

c�1 ðpL � pRÞ þ 1
2
½ðpq2ÞL � ðpq2ÞR�

0
BBB@

1
CCCA; ð47Þ

where q2 ¼ u2 þ v2.
The above procedure can be readily extended to three dimensions. We may rewrite the numerical flux in

a more concise form valid for the Euler equations with any dimensions

F̂F ¼ ð1�MÞ½1
2
ðPL þ PRÞ þ dU� þM ½Uað~uua � s2Þ þ Pa�; ð48Þ

where

P ¼
0

pn
p~uu

0
@

1
A; dU ¼ 1

2c

pL � pR

ðpvÞL � ðpvÞR
c2

c�1 ðpL � pRÞ þ 1
2
½ðpv � vÞL � ðpv � vÞR�

0
@

1
A ð49Þ

and ~uu ¼ v � n. Symbols a, c, s1 and s2 are defined as those in one-dimension, (24), (35), (36) and (37), re-
spectively, but using normal velocities.

Remark 5. Isentropic relations are enforced in order to resolve the stationary entropy wave, which is ac-
curate for 1D Euler equations. However, there are stationary shear waves in multi-dimensional flows, so

that dU in (49) introduces some amount of dissipation to the shear waves. Note that the similar dissipation

is built in the Steger–Warming splitting as well. In fact, the tangential component can be excluded from the

normal component simply by replacing the velocity vector in (49) by the normal velocity vector; however it

is found in our early tests that this attempt causes some carbuncle-like problems. It seems that some dis-

sipation to shear waves is a different mechanism from the dissipative pressure term [10] in suppressing

carbuncle instability. It will be shown in Section 5 that the present scheme passes all tests for inspecting

carbuncle instability. Another controversial issue is related to the resolution of boundary layers in viscous
flow computations. On the one hand, a scheme or Riemann solver that can resolve an isolated shear layer

should be more accurate for the simulation of boundary layers, and this principle has been followed by

many researchers. On the other hand, for the flows with high Reynolds numbers, the size of grid is often not

fine enough for thin shear layers, for instance, the shear layer created in shock diffraction or Mach re-

flection. It has been reported that under-resolved numerical solutions contain spurious nonphysical vortices
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in simulations of a shear layer [1]. Note that the under-resolved problem cannot be avoided by using a fine

grid. The grid size is limited by available computer resources in practice; more importantly for the Euler

equations numerical solutions are always under-resolved whatever the grid size is, if we consider the Euler

equations be the Navier–Stokes equations with an infinitely large Reynolds number. Some amount of

dissipation may be helpful to stabilize the simulation of thin shear layers. So we leave the dissipation to

shear waves as it is in dU. The effect of the dissipation on carbuncle instability, spurious vortices, and

boundary layers is being under investigation.
4. High-order extension

The AUFS scheme provides a numerical flux based on two adjacent states besides an interface. The

scheme can be extended to high-order accuracy following van Leer�s MUSCL approach [20,21], which is

routinely used in practice today especially on unstructured grids. In this section, a second-order extension

for the two-dimensional Euler equations is described for any grid system. The technique can be readily

extended to three dimensions.
The conservation laws are written for a discrete control volume as

Unþ1
i ¼ Un

i �
Dt
DX

Xfaces
k¼1

F̂FkðML;MRÞ; ð50Þ

where F̂FkðML;MRÞ is the flux vector through interface k, determined by primitive variables on two sides of

the interface, ML and MR. Primitive variables, M, are ðq; u; v; pÞ. One may achieve second-order accuracy in
both time and space by setting

ML ¼ Mn
i þ

Dt
2
ðMtÞni þ ðrMÞni � ðrk � riÞ

and

MR ¼ Mn
j þ

Dt
2
ðMtÞnj þ ðrMÞnj � ðrk � rjÞ:

A sketch of the interface is shown in Fig. 3. Time derivative Mt is determined by the quasi-linear Euler

equations

Mt ¼ �ðA;BÞ � rM;

where matrixes A and B are
Fig. 3. Sketch of an interface: face k and its two neighboring volumes i and j; i� 1 and jþ 1 are ghost points.
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A ¼

u q 0 0

0 u 0 1=q
0 0 u 0

0 cp 0 u

0
BB@

1
CCA; B ¼

v 0 q 0

0 v 0 0

0 0 v q
0 0 cp v

0
BB@

1
CCA: ð51Þ

In order to suppress possible numerical oscillations, all gradients or slopes used are locally limited. Only the

slopes in the direction between two control volumes rij are limited by the MINMOD limiter. Setting all

gradients be zero, one gets the first order scheme; setting time derivatives be zero, one gets a scheme with

second-order accuracy in space and first order in time.
Given the states of ML;MR on both sides of the interface, the flux is calculated by the AUFS scheme

(48), or other Riemann solvers. Two Riemann solvers are used for the comparison purpose, the exact one

and the HLLC solver.
5. Numerical results

In this section we illustrate the performance of the AUFS scheme on the 1D and 2D Euler equations for
ideal gases with c ¼ 1:4. For 1D tests, we solve a few initial value problems, which are generally tested by

Toro [18]. Data consists of two constant states ðq; u; pÞL and ðq; u; pÞR, separated by a discontinuity at

position x ¼ x0, and are given in Table 1. The exact and numerical solutions are found in the spatial domain
06 x6 1 using 100 cells. The Courant number or CFL number is taken as 0.9. For each test problem, an

initial location of discontinuity, x0, and the output time are selected; these are stated in the caption of each

figure. Numerical results of nearly all upwind schemes, e.g. [5,14], HLL, HLLC, AUSM, for the same test

problems can be found in [18]. In this paper, for the sake of clarity, numerical results are compared only

with the Godunov scheme using the exact Riemann solver, and the Steger–Warming FVS scheme, which
are two representatives of the Godunov-type scheme and the FVS scheme.

Two 1D AUFS algorithms are tested in this section. Both algorithms are based on flux (25), intermediate

sound speed (35) and first wave estimate (36). One algorithm employs dissipation (28) and second wave

estimate (37), denoted by ‘‘AUFS’’, and the another follows (34) and (38) instead, denoted by ‘‘AUFST’’.

All 1D results are obtained using the Fortran subroutines that are listed in Appendix A.

The solution of Test 1 consists of a right traveling shock wave, a contact wave, and left expansion waves

with a sonic point inside. This test is devised to assess the entropy satisfaction property of numerical

methods. Fig. 4 shows the results of the three schemes. The Godunov scheme gives an expansion shock at
the sonic point, while the Steger–Warming scheme shows a bump there. The AUFS scheme resolves the

sonic point more smoothly than other two schemes, because it implicitly introduces some amount of

nonlinear viscosity by slightly over-estimating the wave speed s2 around left traveling waves, as discussed in
Remark 3. In comparison with the Godunov scheme, there is an additional point inside the expansion

shock. The resolution of the contact wave is virtually identical for three schemes. The AUFS scheme even

resolves the shock slightly sharper than other two schemes.
Table 1

Data for five test problems

Test ðq; u; pÞL ðq; u; pÞR

1 ð1:0; 0:75; 1:0Þ ð0:125; 0:0; 0:1Þ
2 ð1:0;�2:0; 0:4Þ ð1:0; 2:0; 0:4Þ
3 ð1:0; 0:0; 1000:0Þ ð1:0; 0:0; 0:01Þ
4 ð5:99924; 19:5975; 460:894Þ ð5:99242;�6:19633; 46:095Þ
5 ð1:0;�19:59745; 1000:0Þ ð1:0;�19:59745; 0:01Þ



Fig. 4. Solutions of Test 1 with x0 ¼ 0:3. Exact solutions (solid line) and numerical solutions of the first-order schemes are compared at

time 0.2U.
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Test 2 is a receding flow problem. The solution consists of two symmetric expansion waves; the central

region is close to vacuum, which makes this problem a suitable test for accessing the performance of nu-

merical methods for low-density flows. The results are shown in Fig. 5. Pressure and density results from

three schemes agree similarly well with the exact solutions. Both AUFS algorithms give slightly more
diffusive velocity and internal energy than other two schemes. The AUFS algorithm is less dissipative than

the AUFST in this test that contains only isentropic waves. In view of the fact that the Godunov-type

scheme with linearized Riemann solvers will fail for this test [4], the AUFS scheme gives reasonably good

results.



Fig. 5. Solutions of Test 2 with x0 ¼ 0:5. Exact solutions (solid line) and numerical solutions of the first-order schemes are compared at

time 0.15U.

M. Sun, K. Takayama / Journal of Computational Physics 189 (2003) 305–329 319
The solution of Test 3 consists of a strong right running shock wave of shock Mach number 198, a

contact surface and left expansion waves. It is designed to assess the robustness and accuracy of numerical

methods. Fig. 6 shows the results for three schemes. The results from the AUFS scheme are virtually

identical to those of the Godunov scheme. The Steger–Warming scheme has a non-physical bump around
contact wave, which is clearly seen in pressure and velocity distributions.

Test 4, as Test 3, is also designed to access the robustness of numerical schemes. The solution of Test 4

consists of three strong discontinuities. It is an interaction of two strong impinging shock waves. The left



Fig. 6. Solutions of Test 3 with x0 ¼ 0:5. Exact solutions (solid line) and numerical solutions of the first-order schemes are compared at

time 0.012U.
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shock wave moves to the right very slowly, which adds another difficulty to numerical methods. Fig. 7

shows the results for three schemes. Three schemes behave similarly well. The AUFS scheme resolves the

right-traveling shock slightly sharper than the Godunov scheme, but gives a wider left-traveling shock. This

is due to the fact that the AUFS scheme nonlinearly introduces more artificial viscosity to the wave moving

opposite to the flow direction.
Test 5 is the similar to Test 3, except that a negative uniform background speed is added so as to obtain a

stationary contact discontinuity. This test is devised to access the ability of numerical methods to resolve



Fig. 7. Solutions of Test 4 with x0 ¼ 0:4. Exact solutions (solid line) and numerical solutions of the first-order schemes are compared at

time 0.035U.
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the slowly moving contact wave as well as their robustness. Results are shown in Fig. 8. The AUFST al-

gorithm does a better job than the AUFS algorithm that gives one peak behind the shock wave. The contact

discontinuity is heavily smeared in the results of the Steger–Warming scheme. The AUFS and the Godunov

schemes are clearly superior to the Steger–Warming scheme for this test problem. Artificial viscosity built in
the AUFS scheme around a stationary contact is trivial, given by (28) or (34) that is zero under compatible

conditions. The ability of the AUFS scheme to resolve contact discontinuity is more straightforwardly

demonstrated in Fig. 9, in which initial conditions give an isolated contact wave. It is seen that the results of



Fig. 8. Solutions of Test 5 with x0 ¼ 0:8. Exact solutions (solid line) and numerical solutions of the first-order schemes are compared at

time 0.012U.
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the AUFS scheme are identical to those of the Godunov scheme for isolated stationary and moving contact

waves.

In order to verify the performance of the AUFS scheme in resolving isolated shock waves, numerical
results for solving a Mach 20 shock wave are given in Fig. 10. The AUFS scheme resolves a moving shock

similarly well as the Godunov scheme, although it requires one or two cells to resolve a stationary shock

wave. This is not a serious problem for multi-dimensional flows because numerical meshes are not aligned

with shock front in general.



Fig. 9. Resolution of contact waves: (a) stationary contact wave; (b) moving contact wave.

Fig. 10. Resolution of shock waves, Ms ¼ 20: (a) stationary shock wave, 200 steps; (b) moving shock wave, 80 steps.
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A few 2D problems are solved to illustrate the accuracy and robustness of the AUFS scheme. Numerical

results are compared with the exact Riemann solver and the HLLC approximate solver. All numerical

results are computed using the same limiter and boundary conditions for different solvers.
First test case is the propagation of a planar shock wave of Ms ¼ 6 in a straight channel. The long

channel is covered by a nominally uniform grid of 20 800 with unit spacing, the centerline of which is

perturbed from that of a perfectly uniform mesh in the following manner, dy ¼ 	10�3, as sketched in Fig.

11(a), which would be undetectable at the correct scale. The case was first proposed and investigated by

Quirk [12], and now becomes one of the significant examples demonstrating the carbuncle instability. It was

reported that the Riemann solvers that explicitly capture the 1D contact wave suffer from this problem of

odd-even decoupling, such as the exact solver, HLLC approximate solver [11,12]. The problem is illustrated

in Figs. 11(b) and (c), in which the planar shock wave has been greatly distorted by using the exact or the
HLLC solver, in comparison with the AUFS scheme shown in Fig. 11(d). The AUFS scheme exhibits

absence of this carbuncle instability, and this behavior is similar to the AUSM scheme [8] and other FVS

schemes. Notice that the two Godunov-type schemes not only resolve the shock structure erroneously but

also give a slightly faster shock speed, as seen from the locations of shock waves. Second-order version of

the schemes, extended following Section 4, may mitigate, but not solve the problem as shown in Figs. 11(e)

and (f). Although a planar shock wave is recovered, many disturbances still prevail behind the shock wave

in comparison with the uniform solution given from the AUFS scheme.



Fig. 11. A shock wave of Ms ¼ 6 propagating in a channel: (a) perturbation in the vertical direction of dy ¼ 	10�3 is imposed at

centerline.
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Another problem of some Godunov-type schemes is that they produce kinked Mach stems (e.g. [12]) in

the simulation of shock reflection over a straight wedge. A computational grid is shown in Fig. 12(a), in

which only 1 of 16 grid lines in each dimension are plotted. In the results of the exact and the HLLC solver,

the Mach stem is kinked, and some disturbances are visible behind the incident shock on the upper surface.



Fig. 12. Shock reflection: numerical results of first-order schemes.
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The problem can be more serious using fine grids or other badly aligned grids. There is probably insufficient

dissipation added via the shear waves that are neglected in all 1D Riemann solvers. The AUFS scheme gives

a much better result as shown in Fig. 12(d). Similarly to the first case, a second-order version of the

Godunov-type schemes fails to solve the problem completely. Kinked shock wave and post-shock distur-

bance are still visible in Fig. 13(b), compared with the clean solution given by the AUFS scheme shown in
Fig. 13(a). A smaller grid size, 1/32 of that show in Fig. 12, is used for the second-order computations to be

able to illustrate the difference. Judged from the thickness of shock waves and slipstreams in these 2D

results, it is clear that the AUFS scheme, free of carbuncle instability, resolves shock waves and slipstreams

similarly well as the exact Riemann solver does.

The test of shock reflection offers for inspecting the ability of the AUFS scheme to capture strong

moving shock waves. Fig. 14 compares the results of a supersonic flow over a circular cylinder using a few

first-order schemes. This test case has been commonly used for testing carbuncle instability. The Godunov

and HLLC Riemann solvers resolve the bow shock, but pollute the flow regions behind the bow shock. For
more stretched meshes, they can fail to correctly resolve the bow shock structure. The AUFS scheme again

provides a clean flow field behind the bow shock. Fig. 15 shows another example that demonstrates the



Fig. 13. Shock reflection: numerical results of second-order schemes.

Fig. 14. Mach 20 flow over a circular cylinder: grid and density contours.

Fig. 15. Mach 7 flow over a spiked blunt body: density contours and the corresponding solution-adaptive unstructured grid.

326 M. Sun, K. Takayama / Journal of Computational Physics 189 (2003) 305–329



M. Sun, K. Takayama / Journal of Computational Physics 189 (2003) 305–329 327
robustness of the AUFS scheme in computing hypersonic flows with stationary shock waves and their

interactions. It is a steady hypersonic flow ofM ¼ 7 over a blunt body with a long and thin spike. The result

is obtained using the second-order AUFS scheme on a solution-adaptive unstructured grid [17]. The ob-

lique shock, bow shock, expansion waves, and their strong interactions are well resolved.
6. Concluding remarks

We present a novel numerical scheme, named AUFS scheme, for solving the Euler equations. It would

be impossible for the scheme to emerge without two great ideas. One idea is to split the flux vector based on

two artificially introduced wave speeds, discussed in Section 3; another idea is to choose the flow velocity as

one of the wave speeds, stated in Section 3.2. The AUFS scheme surpasses, to our knowledge, all existing
upwind schemes, in one or few points that follow:

1. The scheme is simple. It realizes one-side differencing for all waves in the 1D and multi-dimensional

flows without recourse to any matrix operation, so that it can be extended to more complex systems

with less difficulty.

2. The scheme resolves sonic points smoothly. It implicitly and non-linearly introduces more artificial

dissipation only to the wave that possibly creates an expansion shock, while leaving other waves un-

touched.

3. The scheme can resolve exactly 1D stationary contact discontinuities. In multi-dimensions, the scheme
does not suffer from carbuncle instabilities, which trouble the Godunov-type schemes that may resolve

well contact discontinuities.

4. The resolution and robustness of the scheme is, overall, comparable with the exact Riemann solver.

It should be noted that the present scheme for multi-dimensional flows introduces some amount of

dissipation to shear waves, as the Steger–Warming characteristic splitting does. The role of the dissipation

in overcoming carbuncle instability, and its effects, positive and negative, on the simulation of shear layers

are under investigation, and will be reported soon.
Appendix A

This is a list of two Fortran source codes for solving 1D Euler equations for perfect gases. Given left and

right states in primitive variables, both subroutines calculate the fluxes through the interface between them.

Algorithms 1 and 2 correspond to AUFS and AUFST tested in Section 5, respectively.

Algorithm 1.

1. subroutine flux_aufs1D(rl,ul,pl,rr,ur,pr,gam,fr,fru,fre)

2. c..Input: left states (rl,ul,pl)
3. c..Input: right states (rr,ur,pr)

4. c..Input: the ratio of specific heats (gam)

5. c..Output: fluxes (fr,fru,fre)

6. c..last modified on March 30, 2003 by Mingyu Sun

7. gm1¼ gam-1.

8. al¼ sqrt(gam*pl/rl)

9. ar¼ sqrt(gam*pr/rr)

10. c....part 1 (Calculating F1)
11. ca¼ (al+ar)/2.

12. f1r¼ (pl-pr)/2./ca
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13. f1ru¼ ((ul*pl-ur*pr)/ca+pl+pr)/2.

14. f1re¼ (ca/gm1*(pl-pr)+(pl*ul*ul-pr*ur*ur)/2./ca+ul*pl+ur*pr)/2.

15. c....part 2 (Weighted average of F1 and F2)

16. c.isentropic wave estimate
17. ustar¼ (ul+ur)/2.+(al-ar)/gm1

18. cstar¼ (al+ar)/2.+gm1*(ul-ur)/4.0

19. c.upwinding

20. s1¼ (ul+ur)/2.

21. if(s1.gt.0.)then

22. s2¼ amin1(0.0,ul-al,ustar-cstar)

23. am¼ s1/(s1-s2)

24. fr ¼ (1.-am)*f1r +am*(rl*(ul-s2))
25. fru¼ (1.-am)*f1ru+am*(rl*ul*(ul-s2)+pl)

26. fre¼ (1.-am)*f1re+am*((1./gm1*pl+rl*ul*ul/2.)*(ul-s2)+pl*ul)

27. else

28. s2¼ amax1(0.0,ustar+cstar,ur+ar)

29. am¼ s1/(s1-s2)

30. fr ¼ (1.-am)*f1r +am*(rr*(ur-s2))

31. fru¼ (1.-am)*f1ru+am*(rr*ur*(ur-s2)+pr)

32. fre¼ (1.-am)*f1re+am*((1./gm1*pr+rr*ur*ur/2.)*(ur-s2)+pr*ur)
33. end if

34. return

35. end
Algorithm 2.

1. subroutine flux_aufst1D(rl,ul,pl,rr,ur,pr,gam,fr,fru,fre)
2. c..last modified on March 30, 2003 by Mingyu Sun

3. gm1¼ gam-1.

4. al¼ sqrt(gam*pl/rl)

5. ar¼ sqrt(gam*pr/rr)

6. c....part 1 (Calculating F1)

7. ca¼ (al+ar)/2.

8. f1r¼ gam*(pl-pr)/2./ca

9. f1ru¼ (gam*(ul*pl-ur*pr)/ca+pl+pr)/2.
10. f1re¼ (ca/gm1*(pl-pr)+gam*(pl*ul*ul-pr*ur*ur)/2./ca+ul*pl+ur*pr)/2.

11. c....part 2 (Weighted average of F1 and F2)

12. s1¼ (ul+ur)/2.

13. c.upwinding

14. if(s1.gt.0.)then

15. s2¼ amin1(0.0,amin1(ul,ur)-amax1(al,ar))

16. am¼ s1/(s1-s2)

17. fr ¼ (1.-am)*f1r +am*(rl*(ul-s2))
18. fru¼ (1.-am)*f1ru+am*(rl*ul*(ul-s2)+pl)

19. fre¼ (1.-am)*f1re+am*((1./gm1*pl+rl*ul*ul/2.)*(ul-s2)+pl*ul)

20. else

21. s2¼ amax1(0.0,amax1(ul,ur)+amax1(al,ar))

22. am¼ s1/(s1-s2)
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23. fr ¼ (1.-am)*f1r +am*(rr*(ur-s2))

24. fru¼ (1.-am)*f1ru+am*(rr*ur*(ur-s2)+pr)

25. fre¼ (1.-am)*f1re+am*((1./gm1*pr+rr*ur*ur/2.)*(ur-s2)+pr*ur)

26. end if
27. return

28. end
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